Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.288
Filtrar
1.
Nature ; 626(8000): 874-880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297121

RESUMO

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mutação , Doenças Neurodegenerativas , Estresse Fisiológico , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Ataxia/genética , Sobrevivência Celular/efeitos dos fármacos , Demência/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
2.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242428

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Expressão Gênica
3.
J Mol Biol ; 436(4): 168382, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061625

RESUMO

Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation "dilemma" of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread - yet specific - use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Complexos Multiproteicos , Biossíntese de Proteínas , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas/genética , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Humanos
4.
Mol Biol Cell ; 35(2): ar21, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088875

RESUMO

In vertebrates, two distinct condensin complexes, condensin I and condensin II, cooperate to drive mitotic chromosome assembly. It remains largely unknown how the two complexes differentially contribute to this process at a mechanistic level. We have previously dissected the role of individual subunits of condensin II by introducing recombinant complexes into Xenopus egg extracts. Here we extend these efforts by introducing a modified functional assay using extracts depleted of topoisomerase IIα (topo IIα), which allows us to further elucidate the functional similarities and differences between condensin I and condensin II. The intrinsically disordered C-terminal region of the CAP-D3 subunit (the D3 C-tail) is a major target of Cdk1 phosphorylation, and phosphorylation-deficient mutations in this region impair condensin II functions. We also identify a unique helical structure in CAP-D3 (the D3 HEAT docker) that is predicted to directly interact with CAP-G2. Deletion of the D3 HEAT docker, along with the D3 C-tail, enhances the ability of condensin II to assemble mitotic chromosomes. Taken together, we propose a self-suppression mechanism unique to condensin II that is released by mitotic phosphorylation. Evolutionary implications of our findings are also discussed.


Assuntos
Cromossomos , Proteínas de Ligação a DNA , Animais , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/genética , Adenosina Trifosfatases/genética , Mitose
5.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976091

RESUMO

Eukaryotic chromosomes compact during mitosis into elongated cylinders-and not the spherical globules expected of self-attracting long flexible polymers. This process is mainly driven by condensin-like proteins. Here, we present Brownian-dynamic simulations involving two types of such proteins with different activities. One, which we refer to as looping condensins, anchors long-lived chromatin loops to create bottlebrush structures. The second, referred to as bridging condensins, forms multivalent bridges between distant parts of these loops. We show that binding of bridging condensins leads to the formation of shorter and stiffer mitotic-like cylinders without requiring any additional energy input. These cylinders have several features matching experimental observations. For instance, the axial condensin backbone breaks up into clusters as found by microscopy, and cylinder elasticity qualitatively matches that seen in chromosome pulling experiments. Additionally, simulating global condensin depletion or local faulty condensin loading gives phenotypes seen experimentally and points to a mechanistic basis for the structure of common fragile sites in mitotic chromosomes.


Assuntos
Adenosina Trifosfatases , Cromossomos , Proteínas de Ligação a DNA , Complexos Multiproteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/genética , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
6.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820734

RESUMO

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Assuntos
Proteínas de Ligação a DNA , Schizosaccharomyces , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/química , DNA/genética , Cromossomos , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , Mitose
7.
PLoS Genet ; 19(9): e1010938, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721956

RESUMO

mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleiotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade/genética , Complexos Multiproteicos/genética , Reprodução/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo
8.
J Biol Chem ; 299(6): 104736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086784

RESUMO

Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αß and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. In Xenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is nonessential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and total internal reflection fluorescence microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-ß through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT-binding site. Moreover, we show that Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.


Assuntos
Proteínas Associadas aos Microtúbulos , Complexos Multiproteicos , Proteínas de Xenopus , Proteína ran de Ligação ao GTP , Animais , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster , Células HeLa , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , alfa Carioferinas , beta Carioferinas
9.
Nat Struct Mol Biol ; 30(5): 619-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012407

RESUMO

Three distinct structural maintenance of chromosomes (SMC) complexes facilitate chromosome folding and segregation in eukaryotes, presumably by DNA loop extrusion. How SMCs interact with DNA to extrude loops is not well understood. Among the SMC complexes, Smc5/6 has dedicated roles in DNA repair and preventing a buildup of aberrant DNA junctions. In the present study, we describe the reconstitution of ATP-dependent DNA loading by yeast Smc5/6 rings. Loading strictly requires the Nse5/6 subcomplex which opens the kleisin neck gate. We show that plasmid molecules are topologically entrapped in the kleisin and two SMC subcompartments, but not in the full SMC compartment. This is explained by the SMC compartment holding a looped DNA segment and by kleisin locking it in place when passing between the two flanks of the loop for neck-gate closure. Related segment capture events may provide the power stroke in subsequent DNA extrusion steps, possibly also in other SMC complexes, thus providing a unifying principle for DNA loading and extrusion.


Assuntos
Complexos Multiproteicos , Proteínas de Saccharomyces cerevisiae , Complexos Multiproteicos/genética , DNA/química , Cromossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
10.
Genet Med ; 25(7): 100838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057673

RESUMO

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Serina-Treonina Quinases TOR , Humanos , Lactente , Fibroblastos/metabolismo , Doenças Genéticas Inatas/genética , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Mol Cell ; 83(1): 6-8, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608671

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) senses cellular leucine levels through the GATOR1/2-Rag axis. Jiang et al. show that the Ring domains of GATOR2 subunits maintain the integrity of the complex and promote ubiquitination and inhibition of GATOR1, thereby leading to mTORC1 activation.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/genética , Complexos Multiproteicos/genética , Leucina , Lisossomos
12.
Reprod Fertil Dev ; 35(4): 307-320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36593258

RESUMO

CONTEXT: Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders. AIMS: The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus. METHODS: The reduced expression of mTORC1 was induced after intracerebroventricular injection of lentivirus expressing a short hairpin RNA (shRNA) against regulatory associated protein of TOR (raptor) in adult female mice (ShRaptor mice). KEY RESULTS: The ShRaptor mice were fertile and exhibited a 15% increase in the litter size compared with control mice. The histological analysis showed an increase in antral, preovulatory follicles and ovarian cysts. In the hypothalamus, the GnRH mRNA and FSH levels in ShRaptor mice were significantly elevated. CONCLUSIONS: These results support the hypothesis that mTORC1 in the central nervous system participates in the regulation of female fertility and ovarian function by influencing the GnRH neuronal activity. IMPLICATIONS: These results suggest that a lower mTORC1 activity directly the central nervous system leads to a deregulation in the oestrous cycle and an induction of ovarian cyst development.


Assuntos
Cistos Ovarianos , Aves Predatórias , Feminino , Animais , Camundongos , Humanos , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Aves Predatórias/genética , Aves Predatórias/metabolismo , Mamíferos/genética
13.
Mol Cell ; 83(1): 74-89.e9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528027

RESUMO

The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation. Mechanistically, via interacting with Ring domains of WDR59 and WDR24, the Ring domain of Mios acts as a hub to maintain GATOR2 integrity, disruption of which leads to self-ubiquitination of WDR24. Physiologically, leucine stimulation dissociates Sestrin2 from the Ring domain of WDR24 and confers its availability to UBE2D3 and subsequent ubiquitination of NPRL2, contributing to GATOR2-mediated GATOR1 inactivation. As such, WDR24 ablation or Ring deletion prevents mTORC1 activation, leading to severe growth defects and embryonic lethality at E10.5 in mice. Hence, our findings demonstrate that Ring domains are essential for GATOR2 to transmit amino acid availability to mTORC1 and further reveal the essentiality of nutrient sensing during embryonic development.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 120(1): e2212330120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577058

RESUMO

Target of Rapamycin Complex I (TORC1) is a central regulator of metabolism in eukaryotes that responds to a wide array of negative and positive inputs. The GTPase-activating protein toward Rags (GATOR) signaling pathway acts upstream of TORC1 and is comprised of two subcomplexes. The trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation by serving as a GTPase-activating protein (GAP) for the TORC1 activator RagA/B, a component of the lysosomally located Rag GTPase. The multi-protein GATOR2 complex inhibits the activity of GATOR1 and thus promotes TORC1 activation. Here we report that Wdr59, originally assigned to the GATOR2 complex based on studies performed in tissue culture cells, unexpectedly has a dual function in TORC1 regulation in Drosophila. We find that in the ovary and the eye imaginal disc brain complex, Wdr59 inhibits TORC1 activity by opposing the GATOR2-dependent inhibition of GATOR1. Conversely, in the Drosophila fat body, Wdr59 promotes the accumulation of the GATOR2 component Mio and is required for TORC1 activation. Similarly, in mammalian HeLa cells, Wdr59 prevents the proteolytic destruction of GATOR2 proteins Mio and Wdr24. Consistent with the reduced levels of the TORC1-activating GATOR2 complex, Wdr59KOs HeLa cells have reduced TORC1 activity which is restored along with GATOR2 protein levels upon proteasome inhibition. Taken together, our data support the model that the Wdr59 component of the GATOR2 complex functions to promote or inhibit TORC1 activity depending on cellular context.


Assuntos
Proteínas de Drosophila , Drosophila , Complexos Multiproteicos , Proteína Fosfatase 2 , Animais , Feminino , Humanos , Anticorpos , Drosophila/metabolismo , Proteínas Ativadoras de GTPase , Células HeLa , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Drosophila/metabolismo
15.
Biomolecules ; 12(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358936

RESUMO

Autophagy-dependent cellular survival is tightly regulated by both kinases and phosphatases. While mTORC1 inhibits autophagy by phosphorylating ULK1, PP2A is able to remove this phosphate group from ULK1 and promotes the key inducer of autophagosome formation. However, ULK1 inhibits mTORC1, mTORC1 is able to down-regulate PP2A. In addition, the active ULK1 promotes PP2A via phosphorylation. We claim that these double-negative (mTORC1 -| PP2A -| mTORC1, mTORC1 -| ULK1 -| mTORC1) and positive (ULK1 -> PP2A -> ULK1) feedback loops are all necessary for the robust, irreversible decision making process between the autophagy and non-autophagy states. We approach our scientific analysis from a systems biological perspective by applying both theoretical and molecular biological techniques. For molecular biological experiments, HEK293T cell line is used, meanwhile the dynamical features of the regulatory network are described by mathematical modelling. In our study, we explore the dynamical characteristic of mTORC1-ULK1-PP2A regulatory triangle in detail supposing that the positive feedback loops are essential to manage a robust cellular answer upon various cellular stress events (such as mTORC1 inhibition, starvation, PP2A inhibition or ULK1 silencing). We confirm that active ULK1 can up-regulate PP2A when mTORC1 is inactivated. By using theoretical analysis, we explain the importance of cellular PP2A level in stress response mechanism. We proved both experimentally and theoretically that PP2A down-regulation (via addition of okadaic acid) might generate a periodic repeat of autophagy induction. Understanding how the regulation of the cell survival occurs with the precise molecular balance of ULK1-mTORC1-PP2A in autophagy, is highly relevant in several cellular stress-related diseases (such as neurodegenerative diseases or diabetes) and might help to promote advanced therapies in the near future, too.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Serina-Treonina Quinases TOR , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Células HEK293 , Fosforilação
16.
Mol Cell ; 82(21): 4145-4159.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36206765

RESUMO

Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.


Assuntos
DNA Circular , Complexos Multiproteicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/química , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Cromossomos/metabolismo , Plasmídeos/genética , DNA/genética , Bactérias/genética
17.
Mol Nutr Food Res ; 66(23): e2200186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36189894

RESUMO

SCOPE: Mechanistic target of rapamycin (mTOR) serves as a central signaling node in the coordination of cell growth and metabolism, and it functions via two distinct complexes, namely, mTOR complex 1 (mTORC1) and mTORC2. mTORC1 plays a crucial role in sensing amino acids, whereas mTORC2 involves in sensing growth factors. However, it remains largely unclear whether mTORC2 can sense amino acids and the mechanism by which amino acids regulate mTORC2 has not been studied. METHODS AND RESULTS: After treating cells with indicated concentration of amino acids for different time, it is found that the mTORC2 activation is significantly increased in response to amino acids stimulation, especially cystine. Particularly, knockdown solute carrier family 7 member 11 (SLC7A11) by siRNA shows that SLC7A11-mediated cystine uptake is responsible for activating mTORC2. Mechanistically, the study finds that p38 is activated in response to cystine stimulation, and co-immunoprecipitation (Co-IP) experiments suggest that p38 regulates the assembly of components within mTORC2 by mediating the phosphorylation of the mTORC2 subunit mitogen-activated protein kinase-interacting protein 1 (Sin1) in a cystine-dependent manner. Finally, combined with inducers and inhibitors of ferroptosis and cell viability assay, the study observes that cystine-mediated regulation of the p38-Sin1-mTOR-AKT pathway induces resistance to ferroptosis. CONCLUSION: These results indicate that cystine-induced activation of the p38-Sin1-mTORC2-AKT pathway suppresses ferroptosis.


Assuntos
Ferroptose , Neoplasias , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Cistina/farmacologia , Cistina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
18.
Mol Cell ; 82(22): 4202-4217.e5, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36302374

RESUMO

Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.


Assuntos
Adenosina Trifosfatases , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Cromossomos/metabolismo
19.
Nat Cell Biol ; 24(9): 1407-1421, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097071

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically. The Rag GTPases, RagA or RagB bound to RagC or RagD, tether mTORC1 in a nutrient-dependent manner to lysosomes where mTORC1 becomes activated. Although the RagA and B paralogues were assumed to be functionally equivalent, we find here that the RagB isoforms, which are highly expressed in neurons, impart mTORC1 with resistance to nutrient starvation by inhibiting the RagA/B GTPase-activating protein GATOR1. We further show that high expression of RagB isoforms is observed in some tumours, revealing an alternative strategy by which cancer cells can retain elevated mTORC1 upon low nutrient availability.


Assuntos
Complexos Multiproteicos , Transdução de Sinais , Animais , Encéfalo/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Front Cell Infect Microbiol ; 12: 979996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171757

RESUMO

The mechanistic target of rapamycin (mTOR) functions in two distinct complexes: mTORC1, and mTORC2. mTORC1 has been implicated in the pathogenesis of flaviviruses including dengue, where it contributes to the establishment of a pro-viral autophagic state. Activation of mTORC2 occurs upon infection with some viruses, but its functional role in viral pathogenesis remains poorly understood. In this study, we explore the consequences of a physical protein-protein interaction between dengue non-structural protein 5 (NS5) and host cell mTOR proteins during infection. Using shRNA to differentially target mTORC1 and mTORC2 complexes, we show that mTORC2 is required for optimal dengue replication. Furthermore, we show that mTORC2 is activated during viral replication, and that mTORC2 counteracts virus-induced apoptosis, promoting the survival of infected cells. This work reveals a novel mechanism by which the dengue flavivirus can promote cell survival to maximize viral replication.


Assuntos
Dengue , Complexos Multiproteicos , Apoptose , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...